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ADDRESSING	  THE	  CHALLENGES	  IN	  
NEXTGEN	  DECISION	  MAKING	  	  

The	  Challenges	  
 

In Flight Crew Decision Making:  Now and NextGen (Mosier, Fischer, & Orasanu, 2011), 
we presented the components of the decision-making process and some of the most important 
and relevant models of decision making; described what experienced crews and automation bring 
to the decision process; defined challenges and impediments to decision making; and discussed 
challenges for decision making in NextGen operations.  These challenges included: 

Information overload - The technological capability to provide almost unlimited information 
to flight crews increases the possibility of information overload.  Pilots will be challenged to 
define and access needed information in a timely manner, and to integrate information from 
several sources to create a coherent situation model.  Depending on information design and 
display characteristics, the ability to pattern-match may be reduced, and more analytical 
processing may be required – with its attendant increase in cognitive demands. 

Development of new expertise - In the early stages of NextGen, flight crews will be 
unfamiliar with new systems and procedures, and will need to develop expertise in the changed 
operational domain.  The knowledge store that formed the basis for informed heuristics will need 
to be updated, and the use of shortcuts that work in current operations may lead to errors or mis-
assessments in NextGen operations.  For example, crews may work from old models rather than 
consider new automation capabilities when judging the feasibility of a low-visibility CSPR 
approach, or may break out of a paired approach based on old standards of safe separation. 

Overreliance on automation - Because so much of the flying task will be accomplished via 
automated systems, the tendency to rely on them in decision-making tasks may be exacerbated, 
especially under time pressure.  Susceptibility to automation bias may increase.  Flight crews 
will be dependent on automation for maintaining efficient TBO, and may be reluctant to question 
automation functioning or to make tactical interventions if it means this efficiency would be 
diminished.   

Non-vigilance and fatigue - Extensive research has demonstrated that humans are not good 
at monitoring for long periods of time, and non-vigilance and complacency are certain to be 
challenges in the highly automated NextGen environment.  Moreover, flight crews engaged in 
prolonged monitoring are likely to experience fatigue.   

Erosion of skills  - Dependence on automation will also serve to keep pilots out of the 
flying-task loop, fostering complacency and an erosion of flying and situation assessment skills.  
This may be the most critical challenge of NextGen operations – to ensure that flight crews 
maintain proficiency so that they are prepared to take over from automation when needed.  A test 
of NextGen operations will be how well they can accommodate anomalies and off-nominal 
events.  Skilled flight crew response will be key. 
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In this report, we discuss training and human factors/design literature and recommendations 
to address these challenges.  Section 1 describes interventions geared toward pilots: training for 
coherence, development of new expertise in situation awareness (SA) and decision making, 
methods for mitigating decision biases, supporting vigilance, and maintaining flying skills in the 
highly automated NextGen environment.  We include a discussion of team issues and team 
training to enhance crew resource management, team SA and metacognition, and collaborative 
procedures.  In Section 2 we turn to automation and decision support systems, and address the 
issue of how their design and display can facilitate coherent decision processes and the 
development of new expertise, mitigate decision biases, and support appropriate cognition in 
NextGen operations. 

Definitions	  of	  Key	  Concepts	  
 

In Mosier et al. (2011), we offered several terms to describe judgment and decision making: 
front-end and back-end phases; coherence and correspondence strategies and goals; and tactics 
ranging from intuition to analysis.  These terms are integral to this report as well, and so are 
defined below.  

Front	  End	  and	  Back	  End	  Decision	  Making	  Processes	  

The terms front end and back end delineate two phases of decision making. Front-end 
processes make up what is most often referred to as the judgment phase of decision making. 
Related terms are diagnosis, situation assessment and awareness, building situation models, and 
pattern recognition.  Front-end processes such as acquiring, filtering, integrating, and assessing 
information result in a judgment, which may be a rather straightforward evaluation of the initial 
cue (as when flight crews judge their fuel remaining as insufficient to reach their destination 
airport), or may involve a complex mental representation (as when a pilot integrates status 
indicators from various systems to diagnose a problem).  An individual’s judgment may be based 
on intuitive processes such as pattern recognition, or analytical processes involving deliberation.  
Once operators make a judgment about a problem, their judgment triggers decision processes.   

Decision processes form the back end of decision making and culminate in selecting and 
executing a course of action.  Back-end processes may involve retrieving an appropriate course 
of action from memory, locating a prescribed response in the appropriate manual, adapting a 
known response to the specific demands of the current situation, mentally simulating a possible 
response, planning a sequence of actions, or evaluating alternatives (Orasanu, 2011; see also 
Parasuraman, Sheridan, & Wickens, 2000, for a taxonomy of stages of decision making). 

Applications that support aviation decision making, such as training or system design, must 
be approached very differently depending on the target phase.  For example, decision support 
geared toward front-end processes will facilitate diagnoses, situation assessment and situation 
awareness; systems geared toward back-end processes will focus on aiding option generation, 
selection or choice of actions. 

Correspondence	  and	  Coherence	  Strategies	  and	  Goals	  

The terms correspondence and coherence have been used to denote standards for the 
goodness of decision-making processes, strategies, and/or goals of decision making.  
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Correspondence refers to the empirical accuracy of judgment and decision making, and 
coherence refers to the criteria of rationality and consistency in judgment and decision processes 
(Hammond, 1996, 1999, 2000).  

Correspondence.  Correspondence, or empirical accuracy, is a function of how well an 
individual uses multiple and often fallible (i.e., probabilistic) indicators to make judgments and 
decisions in the world.  For example, a pilot strives for correspondence when checking cues to 
judge height and distance from a runway and deciding when to turn for final approach. Features 
of the environment and the quality of available cues impact the accuracy of both front-end and 
back-end processes.  Cues that have high ecologically validity, that are concrete and/or can be 
perceived clearly will facilitate accurate judgments and correct decisions.  Cues that are 
ambiguous, or are murkier because they are not as concrete in nature or are obscured by factors 
in the environment, will hinder accurate judgments and adversely impact decisions (Mosier, 
2002).  

Although correspondence is most obvious as a criterion for the outcome (back-end) of 
decision making—clearly, accurate decisions are the goal—it is also a criterion for underlying 
front-end processes. It has been documented that operators need to have “good” situation 
awareness to successfully make decisions and perform their tasks (Endsley, 1996, 2000). 
However, the requirements for SA in the NextGen environment will be heavily focused on 
coherence criteria.  

Coherence.  The criterion of coherence, or rationality and consistency, is most often applied 
to front-end processes, and is more difficult to measure than correspondence. Coherence has 
traditionally been evaluated against the standard of mathematical models, and is expected to 
follow Bayesian (1958) laws of probability. This concept has been central in the research on 
heuristics and biases:  the use of heuristics is viewed as a non-coherent strategy that may lead to 
biased judgments and decisions.   

In NextGen operations, coherence must be defined differently, as deterministic information 
rather than probabilistic cues provides the basis for front-end processes. Coherence depends 
upon decision makers using all relevant information logically and consistently. A pilot, for 
instance, seeks coherence when configuring the aircraft for landing, ensuring that all system 
parameters displayed in the cockpit are appropriately set. What is important for coherence in 
automated environments is completeness and consistency of the judgment, diagnostic, or 
situation assessment process, especially in cases where empirical accuracy is not known or not 
easily accessible (Hammond, 1996; 2000; 2007; Mosier, 2002; 2009).  To a significant degree, 
the use of intuition or analysis depends on the characteristics of the cues in the environment:  
engineered numerical or textual information typically induces analysis, whereas graphic or non-
numeric information typically induces intuitive processes. 

Intuition	  and	  Analysis:	  	  Systems	  1	  and	  2 
The notion of a cognitive continuum from intuition  analysis was developed by Hammond 

(e.g., 1993; 1996; 2000).  Analysis refers to a "step-by-step, conscious, logically defensible 
process," whereas intuition typically describes "the opposite - a cognitive process that somehow 
produces an answer, solution, or idea without the use of a conscious, logically defensible, step-
by-step process" (Hammond, 1996, p. 60).  During the judgment process, individuals may move 
along this continuum, oscillating between intuition and analysis - or stopping at points on the 
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continuum (Hamm, 1988).  Pilots, for example, may use intuition when gauging weather from 
clouds ahead, switch to analysis to read and interpret printed weather data, and utilize some 
combination of the two to judge the safest path, or decide whether to continue on or turn back. 

Kahneman (e.g., 2003; Kahneman, Lovallo, & Sibony, 2011) used the terms System 1 and 
System 2 to refer to intuitive and reflective (or analytical) modes of cognition.  Both Hammond 
and Kahneman characterize the two modes as differing on several cognitive properties. System 
1, or intuition is characterized by rapid data processing, with low cognitive control and little to 
no conscious awareness of processes.  In contrast, analysis demands high cognitive control and 
conscious awareness.  It requires task-specific organizing principles, and slow processing of data 
(see Hammond, McClelland, & Mumpower, 1980; Hammond, Hamm, Grassia, & Pearson, 
1997).   

These cognitive systems are not in themselves good or bad in terms of judgment and 
decision making.  However, each system is associated with particular possibilities for error.  
System 1 cognition often involves the use of heuristics, which can lead to biases in judgments 
and decisions.  System 2 analysis requires more time than System 1 intuition, and is brittle in that 
small slips in the process can produce large errors. The appropriateness of each system depends 
on the task context as well as the expertise of the decision maker.  Naturalistic contexts or 
environments with perceptual, probabilistic cues may be amenable to System 1 pattern matching 
processes; electronic environments with data displays and layered information will require more 
mindful analytical processes.  Additionally, expertise may enable System 1 short cuts in the 
naturalistic environment  - expert pilots, for example, may recognize a situation as similar to past 
experiences, and may be able to use intuitive recognitional processes under conditions that would 
demand analysis of a novice.  Pattern matching short cuts, however, may be ineffective or even 
counterproductive in the electronic environment despite high pilot expertise, as the interpretation 
and integration of electronic data require reflective thought. 

Section	  1.	  	  Crew	  Training:	  	  Current	  Operations	  and	  NextGen	  
Recommendations	  
 

The single defining theme from the many discussions conducted around the country was that 
a focus on quality, not just quantity, of training and experience is essential to meaningful 
improvement. While participants generally agreed that experience (i.e., total flight time) can be 
an indicator of a pilot’s proficiency and suitability for part 121/135 operations, they stressed 
that quality of training and quality of experience are far more important in determining an 
individual’s readiness to operate in the air carrier environment. 

Both in Washington and in cities around the country, participants in the Call to Action noted 
the various elements of a generational “paradigm shift” in the pilot population, which involves a 
fundamental shift in experience, expectations, and work practices. Participants stressed that it is 
critical to ensure that training is modified to address and accommodate these changes. There is, 
however, no consensus on what those changes should include. Some participants urged a back-
to-basics focus on stick-and-rudder skills. Others argued that today’s focus on automation 
management, CRM, decision making, and TEM is far more relevant to today’s part 121 and part 
135 operational environment.  (FAA, 2010, pp. 22-23) 
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Training	  Situation	  Awareness:	  	  Coherence	  and	  Correspondence	  

How do we train pilots to be good decision makers in the highly automated, information rich 
NextGen environment?  Broadly, training for decision making will need to focus on front-end 
processes such as situation assessment and situation awareness, and should emphasize process 
vigilance. Training must provide pilots with mental models of system functioning that enable 
them to identify all necessary information, as well as information gathering strategies that ensure 
that they identify, attend to and integrate all appropriate and relevant cues and information to 
make decisions. Although current training has given much attention to expert pattern recognition 
or matching, it may be lagging with respect to improving pilots’ coherence skills through 
training and practice. Because automation will be one if not the defining characteristic of 
NextGen operations, pilots will be making most decisions using data from the highly 
sophisticated electronic systems, rather than probabilistic cues. Training for expertise in this 
environment will entail practice in coherent processing, particularly when systems and 
procedures are slightly different from current practice. In NextGen, for example, the increased 
reliance on automated systems for precise 4D trajectories, provision of more information in the 
cockpit, and new capabilities such as all-weather operations on Closely Spaced Parallel Runways 
(CSPRs) will increase the importance of coherence in decision making. Closely spaced parallel 
approaches will be conducted in IMC using new conformance monitoring displays and 
automated assistance for speed and spacing control.  Pilots will be given more responsibility for 
spacing and will have new automated tools to help them.   
 Situation awareness (SA) concerns correspondence and coherence aspects of situation 
comprehension (e.g., Endsley, 1996). Pilots need to correctly identify and assess elements 
outside of the cockpit, such as other aircraft or mountains, as well as within the cockpit, such as 
autopilot mode or system states, and they need to integrate this information into a coherent 
mental representation, a situation model (Durso, Rawson, & Girotto, 2007; Orasanu, 1994).    
 

SA involves perceptual, interpretive and knowledge integrating processes (Durso & 
Gronlund, 1999; Durso, et al. 2007; Endsley, 1995; 2000); however, current pilot training aimed 
at improving SA has focused mainly on the first two processes. This emphasis is consistent with 
both the notion of expert performance as pattern recognition (Klein, 1989; 1993) and analyses of 
pilots’ SA-related errors (Wickens, 2001).   Error analyses revealed that pilots frequently 
overlooked or misinterpreted critical cues (Jones & Endsley, 1996) or failed to notice task-
relevant changes in flight conditions (Muthard & Wickens, 2002; Sarter & Woods, 1994).  
Problems with the integration of available information, in contrast, were less frequently observed 
(Jones & Endsley, 1996).  Consequently, training must be geared toward improving pilots’ cue 
recognition and awareness of threats, and providing them with strategies that support effective 
monitoring behavior and attention allocation (e.g., Bolstad, Endsley, Costello, & Howell, 2010; 
Endsley & Robertson, 2000; Salas, Cannon-Bowers, Fiore & Stout, 2001; Shebilske, Goethl & 
Garland, 2000).  

SA training should also be cognizant of the phenomenon of change blindness, in which 
individuals fail to detect changes in an image or scene.   This effect has been found to be 
extremely robust (see Levin & Simons, 1997; Rensink, 2002 for reviews).  Early studies in 
change blindness found that participants instructed to view photos for a memory test later failed 
to notice when rather large changes occurred, for instance when the men in the photo changed 
hats (Grimes, 1996). One very common misconception about change blindness is the belief that 
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it only occurs because the participants’ attention is elsewhere (Simons, 2000).  To the contrary, 
multiple studies have demonstrated that attending to where the change occurs is not enough for 
better than average detection of the change (Ballard, Hayhoe, & Pelz, 1995; Simons, 1996). 
What is necessary is that one attends to and encodes individual features of a scene in order to 
detect subsequent changes in that scene (Simons, 2000), although changes affecting the ‘gist’ or 
overall theme of an image are noticed more often than changes that keep the gist intact 
(Sampanes, Bridgeman, & Tseng, 2008).  

 
The implications of change blindness for SA are evident - blindness to significant changes in 

system status or the operational environment can be deadly. One problem for designing training 
to counteract change blindness is that people are very poor at predicting their own ability to 
detect changes (Levin, Momen, Drivdahl, & Simons, 2000). Improved displays as well as 
training interventions are required to lessen its potential impact on SA.  For example, cluttered 
displays can lead to increased change blindness (Treisman & Gelade, 1980); in contrast, displays 
that minimize clutter facilitate operator response, decrease the mental demands of the task, and 
increase operators’ awareness of significant threats (St. John, Smallman, Manes, Feher, & 
Morrison, 2005).  

 
Loss of SA may occur when crews are interrupted during the performance of sequenced 

tasks. Pilots may not remember where in the task sequence they had been prior to the disruption 
and which tasks they already had completed.  A technical solution to this problem is provided by 
the CHEX system (Change History EXplicit; St. John, Smallman, & Manes, 2005), which logs 
relevant changes in a situation and presents them in a sortable table.  CHEX has been shown to 
be quite effective in supporting operators’ change detection and identification, especially in 
comparison to a system that only allows for the simple replay of events at high speeds (St. John, 
Smallman, & Manes, 2005).  

 
SA is also addressed in the broader context of crew resource management training, 

especially as part of courses on threat and error management [see for example the Enhanced 
Safety through Situation Awareness Integration (ESSAI) training developed by Hörmann et al., 
2003a, b; 2004].  Consistent with their overall objective to teach pilots effective error trapping 
strategies, courses emphasize the identification of and planning for potential threats.  Pilots are 
instructed to look for “red flags” –cues that indicate a potential threat—to imagine worst case 
scenarios and to get prepared for these events.  While ‘thinking ahead’ and ‘taking preparatory 
steps’ are cognitive activities that rest on coherence processes, training does not explicitly 
address these information and knowledge integrating processes.  How pilots construct coherent 
mental models of flight situations is an issue that is rarely touched upon in training.  Nor do SA 
or threat and error management training sufficiently acknowledge the importance of meta-
cognitive processes that are necessary for pilots to monitor and assess the adequacy of their 
situation comprehension. On the other hand, coherence and metacognitive processes will be 
critical in pilot decision making in NextGen operations.  As the NextGen cockpit will involve 
more automated systems and functions, pilots will be required to monitor and make sense of a 
larger, more diverse and more distributed set of system indications, heightening the need for 
training initiatives that target coherence processes. 
 Constructing coherent situation representations and metacognition are central issues in 
theories of naturalistic decision making (NDM).  Klein, Phillips, Rall, and Peluso (2007) discuss 
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the role of frames in decision makers’ efforts to understand situations.  Frames are conceived of 
as explanatory structures that are mental representations of individuals’ experiences.  Cues and 
information activate frames that in turn help decision makers to interpret situations by defining, 
connecting and filtering data.  While the Klein et al.’s (2007) data-frame theory concerns 
deliberate sensemaking, the recognition and metacogniton (R/M) model of decision making by 
Cohen and colleagues (Cohen, Freeman, & Wolf, 1996; Cohen, Freeman, & Thompson, 1997) 
includes intuitive as well as analytic processes.  The R/M model assumes that story structures 
guide decision makers’ cue recognition and form the basis for critiquing and correcting their 
situation comprehension. Although both models were originally developed to account for 
decision making by intelligence and military personnel, they generalize to other domains, 
including pilot decision making (Fischer, Orasanu, & Davison, 2003; Orasanu, 2010).  Further, 
Cohen, Freeman and Thompson (1997) designed a training program that is based on the R/M 
model and coaches trainees to explain their situation assessment, evaluate the reliability of their 
story and to consider alternative stories.  This type of meta-recognitional skills training was 
found to improve army commanders’ battlefield situation assessment.  It also could provide a 
useful approach to teaching pilots the analytical skills necessary to cope with the informational 
complexity present in the NextGen flight deck.   

Coherence in the electronic cockpit requires System 2 analytical processing because the data 
comprising the electronic ‘story’ are impossible to evaluate intuitively and heuristics or 
recognitional shortcuts may not work. Training for NextGen will need to include instruction and 
practice in using analytical skills to find relevant data and information, assess automated system 
functions and displays, and develop highly accurate mental models of how the automation 
works. The brittleness of automated systems must be dealt with: failures may be abrupt and 
unpredictable rather than preceded by graceful degradation (Billings, 1996; Woods & Sarter, 
2000), and one tiny detail that is the least bit inconsistent (e.g., a decimal point in the wrong 
place) can destroy the coherence of the electronic story.  These small discrepancies may be the 
most difficult to detect. 

Given the character of automated aids that experts are and will be dealing with in NextGen 
(e.g., FAA, 2009), the importance of comprehensive training for system users cannot be 
overemphasized. SA training for NextGen operations will also need to strengthen pilots’ system 
understanding to ensure adequate system monitoring and mode awareness (Lyall, Boehm-Davis, 
& Jentsch, 2008; Mumaw, Sarter & Wickens, 2001).  SA is both data-driven (e.g., more salient 
cues are more readily perceived) and knowledge-dependent.  However, as the environment in 
which operators act becomes more automated, knowledge-driven processes, and thus the quality 
of an individual’s underlying knowledge structures, gain in importance.  Much research on 
current operations has focused on misunderstandings of complex systems in the cockpit (such as 
the flight management system) that result from mismatches between the mental model of the 
pilot and the behaviors of the system (Sarter & Woods, 1995; Sherry & Polson, 1999; Sheridan 
& Parasuraman, 2006). For instance, Sarter and colleagues (Sarter, Mumaw, & Wickens, 2007) 
observed that pilots’ failures to detect inappropriate mode annunciations resulted from inaccurate 
system knowledge rather than a failure to see the system indication – in fact, pilots frequently 
fixated the FMA when the problem occurred.  Similarly, mode errors, or more generally mode 
confusions have been associated with gaps and/or misconceptions in pilots’ mental models of 
flight deck automation (Mumaw, Sarter & Wickens, 2001; Plat & Amalberti, 2000; Woods & 
Sarter, 2000).  
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Billings (1996) emphasized the need to train pilots how systems operate rather than simply 
how to operate systems:  “If a pilot does not have an adequate internal model about how the 
computer works when it is functioning properly, it will be far more difficult for him or her to 
detect a subtle failure.  We cannot always predict failure modes in these more complex digital 
systems, so we must provide pilots with adequate understanding of how and why aircraft 
automation functions as it does” (p. 96). Operators must have sufficient knowledge of what new 
automated systems can do, what they “know,” and how they function within the context of other 
systems, as well as knowledge of their limitations, in order to utilize them efficiently and exploit 
their real capabilities. These are coherence issues. 
 Current approaches to automation training do not provide pilots with an adequate conceptual 
understanding of flight deck automation (Mumaw, Boorman, & Griffin, 2001; Pariès & 
Amalberti, 2000; Plat & Amalberti, 2000; Woods & Sarter, 2000).  Instead, training focuses on 
basic automation features and functions and offers trainees recipes for their use (Mumaw et al., 
2001; Woods & Sarter, 2000). Fundamental properties of automation as well as strategic 
questions of when to use different features and functions are rarely, if at all, addressed (Mumaw 
et al., 2001).  Recently, several training guidelines and programs have been proposed to redress 
these omissions.  Casner (2003) conducted an automation training study involving students from 
a professional pilot academy.  Study participants received eighteen hours of classroom 
instruction that emphasized fundamental cockpit automation concepts and skills.  At the end of 
training, participants demonstrated a solid understanding of automation functions and principles, 
as assessed in a written exam and during a check flight in a full-mission simulator (average 
scores were between 82 and 91 percent).   

Mumaw, Boorman and Griffin (2001) designed a computer-based automation training 
program to help pilots transitioning to highly automated flight decks acquire simple but effective 
mental models of the automation.  Instruction proceeds in individual modules that form a linked 
hypertext network.  Task modules are organized around a single flight task, provide task-relevant 
automation choices and explain their advantages and disadvantages.  As trainees go through task 
modules they can follow links to mode modules and system concept modules to explore the 
functions, usages and underlying design principles of modes mentioned in the context of a task.  
The best teaching practices discussed by Lyall and colleagues (Lyall, Boehm-Davis & Jentsch 
2008; Lyall, Jentsch, & Boehm-Davis, 2006) echo this approach.  In addition, they stress the 
importance of scenario-based learning and consequently advocate that automation training is 
crew-based.  Crew-based training has the added advantage that it supports peer learning, 
especially if crewmembers are paired in terms of their FMS knowledge. The most effective crew 
combination was found to involve a highly knowledgeable captain and a medium knowledgeable 
first officer.  The benefits of many aspects of crew training will be further discussed in a 
forthcoming chapter that addresses biases and limitations of crew-level decision making.   

New	  Tasks	  and	  New	  Tools:	  Development	  of	  Expertise	  for	  New	  Systems	  

Even the most seasoned professional pilots will experience challenges to their expertise as 
new automated systems and procedures are introduced in NextGen operations. The training issue 
for NextGen is less a matter of how to teach but rather what to teach to enable the development 
of new expertise.  That is, we need to define how expert performance in NextGen will differ 
from expert performance in current operations.  What generalizes? What current skills, 



  11 

knowledge, or mental models are likely to lead pilots astray because they do not apply?  Where 
will pilots likely have skill or knowledge gaps?   

Much of the applied work that has been done on expert processes in aviation has focused on 
intuitive and sensory-driven correspondence strategies.  Klein's model of expert Recognition-
Primed Decision Making (e.g., Klein, 1993, 2000; Zsambok & Klein, 1997), for example, 
describes expertise as the ability to identify critical cues in the environment, to recognize 
patterns of cues, and to understand the structural relationships among cues.  According to this 
model, expert pilots look for familiar patterns of relevant cues, signaling situations that they have 
dealt with in the past, and base their responses on what they know "works" (e.g., Klein, 1993; 
Klein, Calderwood, & Clinton-Cirocco, 1986).  

Experienced pilots typically are highly competent in these types of correspondence 
strategies. They are adept at assessing cue validity within specific situational contexts, and they 
are better than inexperienced pilots at predicting the outcome of a given decision or action as 
their expectations have been shaped by a wide array of experiences. Expertise offers a great 
advantage in correspondence judgments, as expert pilots are able to quickly recognize a situation 
from patterns of probabilistic cues, and may be able to use intuitive judgment processes under 
conditions that would demand analysis from a novice. For example, novice pilots may need to 
use a combination of computations and cues outside of the aircraft to figure out when to start a 
descent for landing.  In contrast, experienced pilots may look outside the cockpit window and 
intuitively recognize when the situation ‘looks right’ to start down.  

Results of a study examining performance in paired simultaneous CSPR approaches 
illustrate the trade-offs involved in mixing old and new procedures and automation (Verma et al., 
2011).  Pilots joined a paired approach at a coupling point and continued to SFO; they were 
responsible for maintaining a 15sec temporal separation from the lead aircraft.  Display type – 
position vs. prediction display – and current automation vs. future auto speed control automation 
were independent variables.  Perhaps the most interesting finding was the interaction between 
display and automation with respect to workload.  When pilots were working with current 
automation, the position display was rated slightly higher on workload than the prediction 
display (though not statistically significant, p=.054). In the auto speed control automation 
condition, however, the prediction display produced higher workload than the position display. 
The researchers posited that because the prediction display resembled the ‘green arc’ used for 
altitude prediction, pilots were able to use it relatively easily when combined with familiar 
automation.  Its advantage disappeared when the display was combined with new automation.     

Designers should take these results to heart, as they highlight the need to avoid display cues 
that evoke newly inappropriate responses. They also suggest that pilots will need to be very 
careful when applying old mental models or ‘how to’ knowledge to new displays and 
automation.  New expertise requires coherent processing - slightly different data displays must 
be examined thoroughly to ensure accurate comprehension, particularly when displays are 
coupled with new systems and procedures. A potential hazard is that pilots may think they 
‘recognize’ and can use a display in familiar ways because it is similar to a current one (e.g., the 
prediction display is similar to the green arc), and may not be cognizant of differences in 
interpretation or function. 

Caveats for expertise in automated environments. It is important to note that expertise does 
not offer the same advantages (i.e., the ability to use pattern-matching short-cuts) in the 
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electronic world as it does in the naturalistic world.  Experience may offer hints as to where to 
look for anomalies in technological environments, but it does not insulate domain experts from 
the need to navigate their way through layers of data when anomalies occur. This represents a 
shift to System2, or knowledge-based mode of problem solving. Performance and mistakes in 
knowledge-based cognition by experts resemble those of novices (Klein, et al., 2007; Reason, 
1990).    

Experience may even be counterproductive if accompanied by the tendency to rely on 
electronic data and systems in an intuitive manner.  Riley (1994), for example, found that 
experienced pilots were more likely than students to inappropriately rely on automated systems 
after the systems had failed. More experience was correlated with a greater tendency toward 
automation bias in professional pilots (Mosier, Skitka, Heers, & Burdick, 1998).  Experience can 
also work against a pilot, in that it may induce a false sense of coherence, or the tendency to see 
what one expects to see rather than what is there, as illustrated by the “phantom memory” 
phenomenon found in part-task simulation data (Mosier et al., 1998; Mosier, Skitka, Dunbar, & 
McDonnell, 2001).  

System1 or System2? A critical component of expertise in the NextGen cockpit will be 
knowing when the situation is amenable to pattern recognition, and when it will require analysis. 
Pattern matching does not work when data are in digital format, are hidden below surface 
displays, or mean different things in different modes. Some current displays, however, may in 
fact be leading operators astray by fostering the assumption that data can be managed in a non-
analytical fashion. This is an especially potent trap for highly experienced decision makers, who 
may be particularly vulnerable to errors if they ‘see’ patterns before they have sought out and 
incorporated all relevant information into their assessment. Training, then should emphasize the 
metacognitive monitoring of one’s judgment and decision processes, to ensure that they are 
appropriate to the situation at hand.  

Capitalizing on expert metacognition. The development of expertise for NextGen, as with 
any new task or system, will require a qualitative shift in processing and organization of 
knowledge (Tsang, 2003), and a continued emphasis on coherence skills.  One aspect of 
expertise that professional pilots will take with them to the NextGen environment is 
metacognitive capabilities that surpass those of novices (Druckman & Bjork, 1991).  Experts are 
aware of what they do and don’t know, they plan ahead, they can manage their time and 
attentional resources, and they are able to monitor and revise their own problem-solving efforts 
(Cohen, 2011; Glaser, 1987; Tsang, 2003).  Taking advantage of these abilities, training could 
target expanding these metacognitive skills for the new context, including training and practice 
in choosing the appropriate judgment strategy and in modifying it in response to situation events 
(Cannon-Bowers & Bell, 1997). In particular, pilots will need to monitor their cognitive 
processes to ensure they do not fall prey to System1 errors or biases. 

Mitigating	  Automation	  Bias	  and	  Other	  Decision	  Biases	  

Debiasing Decision Making 
Although the experience base of professional aircrews provides a layer of insulation against 

decision biases, pilots may still be susceptible to the threats inherent in cognitive shortcuts. For 
flight crews making decisions, biases such as representativeness, availability, confirmation bias, 
overconfidence, and automation bias are threats to front-end processes.  Each of these may 
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hinder accurate situation assessment, as they may impact the type and amount of information 
attended to or overlooked, as well as the weighting, categorization, and interpretation of that 
information.  Confirmation bias, overconfidence, and automation bias may be particularly 
hazardous, as they threaten not only front-end situation assessment but also back-end processes 
such as making choices or mentally simulating outcomes of a course of action. 

Researchers seeking ways to help individuals avoid decision biases have referred to these 
techniques as debiasing (Fischhoff, 1982; Hirt, Kardes & Markman, 2004; Sanna & Schwarz, 
2003). Techniques have included increasing bias awareness, warning decision makers about 
relevant biases, providing feedback on decision making, improving decision training, 
“unfreezing” decision processes and changing them, and increasing incentives or motivation to 
strive for rationality in judgment and decision making.  All of these techniques proved to have 
limited effectiveness, and their impact was found to vary by bias (e.g., Bazerman, 2002; Evans, 
1989; Fischhoff, 1982; Humble, Keim, & Hershauer, 1992; Nisbett, Krantz, Jepson, & Ziva, 
1983; Zakay, 1992). A short list of effective measures to eliminate biases has not been identified 
(Rehak, Adams, & Belanger, 2010).  Instead, techniques were most successful if they were 
tailored to address specific biases, or as, Rehak, Adams, and Belanger (2010) suggested, if they 
were mapped onto the corresponding component or phase of decision making.  

Research indicates that merely warning people about the influence of biases is not sufficient 
to eradicate them (Block & Harper, 1991; Fischhoff, 1982). On the other hand, training that 
provides individuals with feedback on their decisions and decision process has yielded some 
success (Alpert & Raiffa, 1982; Fischhoff, 1982; Sharp, Cutler, & Penrod, 1988). Bazerman 
(2002), for example, draws from the Lewin-Shein model of social change (Lewin, 1947; Schein, 
1962), and discusses debiasing training in terms of unfreezing of old cognitive habits. Decision 
makers are provided with evidence of predictable errors in their judgment, receive instruction 
about biases and are given practice in new decision behaviors to integrate and refreeze new 
decision processes (Arnott, 2002)  

Inducing System 2 processes to counteract biases.  Because decision biases are the result of 
heuristics, or short-cuts in front- or back-end decision processes, successful debiasing 
interventions typically focus on eliciting or training more effortful cognitive (System 2) 
strategies (Milkman, Chugh, & Bazerman, 2009), for instance, by encouraging decision makers 
to consider alternatives or by holding them accountable for their decisions.  Kahneman, Lovello, 
and Sibony (2011) proposed a 12-question process review for decision makers to forestall biases.  
In particular several items on their decision “quality control” checklist seem most useful to 
supporting analytical thinking by aircrews in NextGen operations:  

⇒ Check for saliency bias.  Is situation assessment/diagnosis overly influenced by salient 
cues, experiences or analogies?  Is too much weight being put on salient indicators at the 
expense of less prominent ones? Are particularly salient successful/unsuccessful 
experiences really relevant and appropriate to the current situation? 

⇒ Check for confirmation bias.  Have credible alternatives to situation assessment been 
considered?  Has disconfirming information been sought? 

⇒ Check for availability bias.  Is there any more information to be considered?  If you had a 
checklist of information needed, what would be on it? 
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⇒ Check for anchoring bias.  What was the initial diagnosis/assessment?  Have later data 
and information been considered adequately?  Have initial hypotheses been adjusted 
sufficiently? 

Kahneman et al. recommend that because people usually do not recognize their own biases, 
the review should be done by individuals who are not part of the decision process.  While this is 
not a practical recommendation for aircrews in the operational environment, it does suggest that 
the process would be effective only if it involves more than the deciding crewmember – so, for 
example, pilots could be trained to cross-check each others’ judgment processes using these 
‘checks’ as part of monitoring/challenging procedures.  

Considering alternatives.  This debiasing strategy requires individuals to generate 
alternative outcomes to scenarios (Lilienfeld, Ammirati, & Landfield, 2009). Instructing 
individuals to consider alternatives is believed to change their cognitive processing from 
automatic (heuristic) to a “rule-governed, controlled style of thinking” (Lilienfeld, Ammirati, & 
Landfield, 2009, p.393),.  This technique was found to improve individuals’ decision making  
beyond the original study domains or contexts (Galinsky & Moskowitz, 2000).  For instance, 
Cohen et al. (1997) successfully used a variant of it to train military commanders’ situation 
awareness.   

Sanna, Schwarz and Stocker (2002) examined whether the “considering alternatives” 
technique could eliminate the hindsight bias.  Study participants were asked to generate either 2 
(easy condition) or 10 (difficult condition) alternatives to the outcome of a scenario, and to rate 
how likely these alternative were to occur.   Hindsight bias was reduced when it was easy for 
participants to think of alternatives; however, the bias was exacerbated when alternatives were 
difficult to generate.  Apparently participants equated the cognitive effort involved in the task 
with the inevitability of a given outcome.  

Contradictory thinking.  Given the plethora of data that will be available in the NextGen 
cockpit, pilots may limit information search to items that confirm their situation assessment.  
Pilots may also be more susceptible to confirmation bias if time-pressure is high, and/or if they 
have strong expectations, for instance, concerning their next clearance (e.g., Hooey & Foyle, 
2001). Contradictory thinking may be an effective technique to mitigate confirmation bias, most 
notably to encourage decision makers to search for inconsistent information or to consider a 
wider set of decision scenarios (Fischhoff, 1982 in Arnott, 2006).  Research by Burke (2006) on 
legal decision making suggests that lawyers could neutralize confirmation bias by acting as their 
own Devil’s Advocates, reviewing cases from the perspective of the other side and creating 
counterarguments to their own position.        

However, few researchers have examined how best to mitigate confirmation bias in a 
complex setting.  Exceptions include work by Lehner, Adelman, Cheikes, & Brown (2008), who 
investigated the bias in a complex intelligence analysis task.  They introduced a debiasing 
technique called Analysis of Competing Hypotheses (ACH), which required participants to list 
hypotheses and supporting evidence in a matrix.  They found that ACH did reduce confirmation 
bias – but only in participants who did not have prior intelligence analysis experience.  
Consistent with earlier evidence in a complex tactical decision task (Tolcott, Marvin, & Lehner, 
1989), Lehner et al. observed that the bias affected the weights that were given to confirming vs. 
disconfirming evidence, such that new evidence that supported participants’ current beliefs was 
weighted more heavily than evidence that did not.  Similarly, in a study simulating intelligence 
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analysis, Wickens and colleagues (Wickens, Ketels, Healy, Buck-Gengler, & Bourne, 2010) 
found that warning participants about bias and emphasizing the age of intelligence information 
helped them to weigh the most recent cues more optimally; however, the instructions did not 
eliminate the anchoring heuristic.  Anchoring is a ‘close cousin’ to confirmation bias and refers 
to the tendency of individuals to weigh more heavily cues and information that was received 
early compared to those obtained later. 

Mental simulation.  Mental simulation may be an especially useful mechanism to induce 
individuals to consider alternative outcomes.  It is a strategy employed by expert decision makers 
and is amenable to training interventions. Galinsky and Moskowitz (2000) carried out a series of 
experiments in which study participants were asked to imagine ways an outcome could have 
turned out differently.  The researchers hypothesized that counterfactual primes, or scenarios in 
which the outcome might have been different, would lead to mental simulations making relevant 
alternatives more accessible.  In addition, it was hypothesized that the impact of counterfactual 
reasoning would generalize to other contexts.  Participants were presented with counterfactual 
primes: at a rock concert a woman gives up her seat to get a better view of the stage; 
subsequently a surprise lottery is announced and the number of her new (or past) seat is the 
winning number. Participants in the control group only read about a woman who won (or did not 
win) a surprise lottery at a rock concert.  Compared to control subjects, participants who had 
received a counterfactual prime were more successful and faster at solving a task (‘Duncker 
candle task’) whose solution depended on the non-typical use of objects.  This finding suggests 
that the counterfactual scenario primed participants in the experimental condition to imagine 
alternative uses of objects.   

While mental simulation is a strategy that expert decision makers employ in real world 
settings, they typically do not consider several alternative courses of action (Klein, 1989; 1993).  
Instead, they quickly size up a situation and generate an action plan, which they “run through” in 
their head.  Only if this simulation leads to a problem or violates their expectations, do they 
consider alternative scenarios. 

In the highly automated cockpit, decision-relevant patterns are not always easy to detect, 
even for experts, because of the nature of electronic data and information.  Data may be 
distributed across several displays, and the meaning of data varies, for instance dependent on the 
system mode.  Accordingly, pilots need to examine carefully all relevant data in order to avoid 
confirmation bias and accurately diagnose the situation.  Errors related to confirmation bias were 
observed in aviation accidents and full-mission simulations using current automation (see 
Billings, 1996; Mosier et al., 1998; 2000).  NextGen operational conditions, including increased 
reliance on electronic systems and time pressure, are likely to foster these types of errors.  
Techniques that promote the consideration of alternatives, such as mental simulation, 
Kahneman’s et al. process review questions, or Cohen’s et al. meta-recognitional skills training, 
may be useful countermeasures to guard against confirmation bias in complex environments such 
as NextGen operations.  
Accountability demands 

Accountability refers to making individuals responsible for providing justifications for their 
decision processes and choices (Tetlock & Kim, 1987; Skitka, Mosier & Burdick, 2000).  
Imposing accountability demands was found to sensitize decision-makers to the need to construct 
compelling justifications for their decision processes and choices. Social accountability can 



  16 

successfully ameliorate a broad array of cognitive biases, including primacy effects (Tetlock, 
1983), the fundamental attribution error (Tetlock, 1985a), overconfidence effects (Tetlock & 
Kim, 1987), as well as the sunk cost effect (Simonson & Nye, 1992). Pre-decisional imposition 
of accountability demands cause decision makers to employ more multidimensional, self-critical, 
and vigilant information seeking, as well as more complex data processing, and has been shown 
to reduce cognitive “freezing” or premature closure on judgmental problems (Kruglanski & 
Freund, 1983), and to lead decision makers to employ more consistent patterns of cue utilization 
(Hagafors & Brehmer, 1983).  

Mosier and colleagues (Mosier, Skitka, Heers & Burdick, 1998; Skitka, Mosier & Burdick, 
2000) investigated whether accountability could ameliorate automation bias, the tendency to use 
automation as a heuristic replacement for vigilant information search, in students and in 
experienced airline pilots.  It was hypothesized that increasing accountability for decisions and 
actions involving automation would increase vigilance in information processing strategies and 
cause operators to put more effort into verifying information and identifying appropriate 
responses than when accountability demands were not present.  

A study with students (Skitka, Mosier & Burdick, 2000) provided evidence for the 
effectiveness of accountability as a mitigator of automation bias.  Non-experienced participants 
using an automated aid completed computerized flight simulations that mimicked the monitoring 
and tracking tasks performed by professional pilots.  Participants were made to feel accountable 
for speed, accuracy and overall performance, or were not made to feel accountable.  Researchers 
found that being held accountable for overall performance or for accuracy led to fewer omission 
and commission errors and promoted increased vigilance, and that the lower rate of decision 
errors correlated with an increased rate of verifying information.  This is significant because it 
suggests that accountability promoted more vigilant and coherent decision processes, which in 
turn resulted in more accurate decisions. Furthermore, there were no differences in response 
times, indicating that it did not take significant time to verify the information and avoid decision 
errors.  

Accountability was experimentally manipulated in a part-task simulator study using 
experienced airline pilots (Mosier et al., 1998). Accountable participants were told that the 
purpose of the study was to analyze the performance of the pilot in heavily automated cockpits, 
that experimenters would be monitoring and evaluating their performance with respect to the use 
of automated flight systems, would be collecting performance data, and would ask them to 
justify their performance and strategies in the use of the automated systems in an interview 
following the experiment. Participants in the Non-Accountable condition were told only that the 
purpose of the study was to analyze the role of the pilot in heavily automated cockpits.  To 
reinforce non-accountability, these pilots were also advised that, due to a breakdown of the data 
collection computer, no performance data would be collected. No mention of a formal interview 
or justification of performance was made.  Monitors at the experimenter observation station were 
turned off while participants were in the room, and the video camera was pointed away from the 
subjects and was not turned on.    

Researchers found partial support for the effectiveness of accountability as a debiasing 
technique for professional pilots.  Although experimentally manipulated accountability demands 
did not significantly impact performance in this study, those professional pilots who reported on 
a debriefing questionnaire a higher internalized perception of ‘accountability’ for their 
performance and strategies of interaction with the automation were significantly more likely to 
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double-check automated functioning against other cues, and committed fewer omission errors 
than those with a lower internalized perception.   

Taken together, the studies indicate that interventions that emphasize accountability for 
decision processes may help to mitigate automation bias.  Accountability accomplishes this by 
fostering more vigilant and thorough information search and integration, which will be critical in 
NextGen operations. The Mosier et al. (1998) study further suggests that a key factor for the 
success of accountability demands in professional pilots is that they be internalized rather than 
imposed.  To accomplish this, airline cultures will need (a) to support the notion of 
accountability for decision processes, and also (b) to provide sufficient training on automation 
functioning so that pilots know what indicators should be checked, what information is relevant, 
and where to find information to verify or disconfirm their hypotheses.  
Team Training – The Role of the Crew in NextGen Decision Making 

The discussion to this point has dealt with decision making by individuals, focusing on 
individual biases and associated techniques for overcoming biased judgment and decision 
making.  But in fact, aviation decisions are made in a crew context, primarily among the pilots 
on the flight deck, but also in larger teams involving the cabin crew, air traffic control, dispatch, 
maintenance, and – eventually – with other aircraft in a Next Gen environment. 

Simply being in a crew or team context may reduce judgment or decision biases or errors 
because of the increased body of specialized knowledge and cognitive resources available.  Team 
members can catch and correct each other’s errors, contribute to more thorough information 
searches, evaluate evidence, and decide on a well-grounded course of action.  But the social 
processes inherent in team functioning create their own costs and introduce team biases over and 
above those found in individual reasoning.   

These team-level biases and techniques that have been developed for assuring effective team 
decision making by focusing specifically on team-level processes will be presented in a 
forthcoming chapter.   
 

Training	  for	  Vigilance	  in	  Highly	  Automated	  Operations	  

Maintaining vigilance in NextGen operations will clearly be an issue.  Flying 4D trajectories 
will require constant monitoring of automated systems, with few requirements for intervention in 
normal operations. Even the requirements for communication with ATC will be reduced, giving 
pilots few scheduled opportunities to check system and aircraft status.  Many studies of vigilance 
have established the fact that the ability to monitor for the occurrence of infrequent, 
unpredictable events – such as automation errors - typically declines over time.  Additionally, 
automated systems, especially those that are perceived to be highly reliable, may induce 
complacency in the operator, exacerbating the tendency toward non-vigilant monitoring (e.g., 
Parasuraman, Molloy, & Singh, 1993).   

Training that includes automation failures has been proposed as a method to increase 
vigilance.  Research participants who experienced an automation failure during task training 
exhibited less complacency than those who were simply told that the automation was not 
perfectly reliable (Bahner, Huper, & Manzey, 2008; Gore, et al., 2010). No magic bullet exists, 
however, to ensure continued vigilance across many hours of flying.  The best avenue for 
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promoting vigilance among pilots may well be through team training and crew resource 
management practices and procedures, as discussed below.     

Meeting	  the	  Demands	  of	  a	  Highly	  Automated	  Cockpit	  While	  Maintaining	  Flying	  Skills	  

Increased flight deck automation may degrade pilots’ flying skills and their ability to recover 
from automation failures. This concern was voiced by some participants in the FAA survey on 
aviation safety in NextGen (2010) who “urged a back-to-basics focus on stick-and-rudder 
skills…”  (FAA, 2010, pp. 22-23).  Reduced average pilot experience, reduced depth of piloting 
experience, and improved technology are all potential threats in the airline system (Bent & Chan, 
2010).  Moreover, it is possible for today’s pilots to fly advanced aircraft for most of their 
careers, and never experience the need to acquire finely-tuned manual skills (Billings, 1996).   
Technology offers protection and increased efficiency for system operations, but reduces pilots’ 
opportunities for on-the-job challenges and skill acquisition, highlighting the importance of 
simulator training that involves new classes of system failures.   
 A logical place to emphasize flying skills is during recurrent line-oriented flight training 
(LOFT).   In particular, pilots need practice taking over when highly automated modes of 
operation fail, especially as the level of automation increases and requirements for pilot 
intervention during normal operations decrease (Endsley & Kaber, 1999).  In addition to 
standard system failures, simulator training scenarios could include automation failures and 
events that require reversion to some level of manual flight.  Additionally, during routine flights 
pilots can be encouraged to shut off the automation on a regular basis to enable practice on flying 
skills.  These are potentially controversial suggestions, as NextGen operations depend on highly 
sophisticated automated systems, and airlines and aircraft manufacturers may prefer that pilots 
use full automation for reliability and efficiency; however, these suggestions are consistent with 
at least some airline statements of automation philosophy (Billings, 1996; Byrnes & Black, 
1993). 

Section	  2.	  	  Automation	  Design	  for	  Decision	  Support:	  	  Current	  
Technology	  and	  NextGen	  Recommendations	  
 

Automation	  Design	  for	  Decision	  Support	  

The implementation of new automated decision support systems in NextGen presents 
challenges to system designers, to expert users, and to the research community.  The requirement 
for designers is to create systems that are ‘expert-centered,’ thereby facilitating and enhancing 
human expertise, particularly with respect to coherent use of automation.  Expert operators must 
develop techniques to use automated aids efficiently and effectively, neither over- nor 
underestimating their capabilities.  The challenge to the research community is to enable expert 
users and system designers to meet their respective goals, through empirical exploration and the 
establishment of principles for effective interaction between expert decision makers and 
automated systems. A body of literature exists in the area of engineering design to aid decision 
making—including several comprehensive chapters in Reviews of Human Factors volumes 
(Laughery & Wogalter, 2006; Rogers, Strong, & Fisk, 2006; Sheridan & Parasuraman, 2006; 
Smith, Bennett, & Stone, 2006). One theme that is consistent in the literature is that 
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technological innovations to enhance decision making must be based on correct assumptions 
about human judgment processes and about how people think and use information (e.g., Maule, 
2009).   

Designing	  for	  Coherence	  

Presentation of Data and Information  
Attention guidance. Implicit in the use of all relevant cues is an understanding of how the 

cues combine to create present awareness and prediction of a future situation. Attention 
distribution based on tactical considerations has been found to be systematically related to 
decision performance (Endsley & Smith, 1996).  Moreover, attention to relevant cues is a 
predictor of both coherent diagnosis and accurate decisions. Consistent with this assessment is 
the finding in the medical field that the most effective decision support systems guided attention 
via clinical reminders (Garg et al., 2005).  

Wickens (2003) discusses seven critical principles of display design related to information 
processing:  information need, legibility, display integration/ proximity compatibility principle, 
pictorial realism, moving part, predictive aiding, and discriminability of status vs. command.  
These principles acknowledge the limitations in human attention and define characteristics that 
will facilitate processing of essential information.  For example, the attitude indicator integrates 
attributes of pitch and roll (display integration/ proximity compatibility principle) so that the 
pilot can process both from the slant and vertical position of a single indicator (Vidulich, 
Wickens, Tsang, & Flach, 2010).  Additionally, as pilots gain experience with cockpit displays, 
they develop selective attention strategies, directing their focus toward display areas that are 
relevant to the task at hand and where they expect to see changes (Senders, 1983).  

 
Studies in diverse fields have demonstrated that experienced decision makers are likely to 

spend more time seeking out and attending to relevant cues than those who are less experienced 
(e.g., Cesna & Mosier, 2005; Khoo & Mosier, 2009; Salterio, 1996; Schriver, Morrow, Wickens, 
& Talleur, 2008). Experts also tend to “chunk” cues and to create patterns of relevant or 
structurally related cues (Chase & Simon, 1973; Endsley & Smith, 1996).  Because attention is 
the critical first step in the front end of decision making, researchers and designers share the 
goals of supporting diagnosis and decisions through attention guidance (e.g., Horrey et al., 2006) 
or the identification of and training for efficient and coherent attention patterns (e.g., Schriver et 
al., 2008).  This is critical to avoid decision process limitations and flaws such as attentional 
tunneling (the allocation of attention to a particular channel of information at the cost of other 
sources of information; e.g., Wickens & Alexander, 2009), “cognitive lockup” (the tendency to 
stay focused on one task even if a second task has higher priority; e.g., Kerstholt, Passenier, 
Houttuin, & Schuffel, 1996), attentional failures (e.g., Caird, Edwards, Creaser, & Horrey, 
2005), or anchoring on early information with insufficient adjustment as new information comes 
in (Wickens, Ketels, Healy, Buck-Gengler, & Bourne, 2010). In NextGen, appropriate design of 
technological aids will enable coherent decision making by highlighting relevant data and 
information, helping pilots determine whether all information is consistent with a particular 
diagnosis or judgment, and providing assistance in accounting for missing or contradictory 
information.   

Designers of display and notification systems must balance the need to gain the user’s 
attention, generate rapid comprehension of the message, and encourage the most appropriate 
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response (McCrickard, Catrambone, Chewar, & Stasko, 2003). It is commonly necessary to 
balance these objectives while also being sensitive to the context in which information is to be 
received. That context includes the physical environment, the technology used to enact the 
notification, and the other tasks currently occupying the operator. Furthermore, the techniques 
employed in delivering notifications influence the recipient’s response. For instance, factors such 
as the form (e.g., numerical, graphical, narrative),	  ordering, context (e.g., positive vs. negative 
frame), and organization (e.g., in lists, tables, charts), as well as the vividness (i.e., the presence 
or absence of other salient visual cues, such as color and size of visual elements) of the 
information display will impact the attention to as well as comprehension of information.  

Although current decision support systems do a reasonable job of guiding pilots’ attention to 
system failures and potentially catastrophic anomalies (such as another aircraft in their path), 
they do not always facilitate attention to less salient information needed to verify aircraft mode 
or alerts and anomalies.  As automated operations increase, NextGen pilots may be encouraged 
to rely uncritically on automated information, and may be susceptible to non-coherent or biased 
decision making.  By carefully engineering the way in which data are presented to decision-
makers for evaluation, it is possible to either overcome or exacerbate the use of heuristics and 
resultant biases, as well as other limitations that impact the quality of decisions that are made. 

Designing to mitigate decision biases.  Decision support systems (DSSs) can be designed in 
ways that mitigate decision biases, although some research has shown that DSSs do not always 
eliminate them (e.g., George, Duffy, & Ahuja, 2000).  Arnott (2006), for example, proposes a 
DSS development cycle that uses cognitive bias theory as a focusing construct, and incorporates 
debiasing mechanisms similar to those discussed above (feedback, encouraging the search for 
disconfirming information, consideration of alternative scenarios or formulations of the problem) 
to overcome the negative effects of relevant biases.  Interestingly, one step in Arnott’s approach 
is to “reassure the user that the presence of biases is not a criticism of their cognitive abilities” 
(p. 65), a supportive notion that may make it more acceptable for operators to acknowledge 
susceptibility to decision biases and follow debiasing procedures.  

Particular types of decision support interfaces may also ameliorate cognitive biases.  
Graphical interfaces rather than text, for example, have been shown to mitigate confirmation 
bias. In a war-games simulation, experienced Naval intelligence analysts were presented with 
combat scenarios either through an interactive graphical format or via text only. The scenarios 
presented to both groups contained a ‘likely explanation’ or hypothesis for the enemy activities 
detailed in the scenarios. Analysts were tasked with reviewing other intelligence concerning the 
enemy activities in order to determine how to proceed. Analysts that had been presented with the 
intelligence in graphical format were found to consider and incorporate more information that 
conflicted with the ‘likely explanation’ they had been provided than did their text-condition 
counterparts. The investigators posited that graphical presentation of the intelligence allowed the 
intelligence to remain more accessible and salient throughout the exercise, which in turn led to 
more disconfirming evidence being considered (Cook & Smallman, 2008).   

DSSs can also be designed in ways that exacerbate cognitive biases.  Systems that foster 
intuitive, System 1 thinking encourage heuristic processes and discourage analytical 
management.  This is especially true when the interface does not provide the necessary 
information to establish or reinforce correct mental models of system functioning.  Transparency 
will be an essential characteristic in the design of NextGen systems, as it is critical to the 
integration of relevant information and the management of systems.  
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Transparency.  Many researchers have pointed out the need for more transparency and less 
hidden complexity in decision aiding systems (e.g., Woods, 1996; Sarter, Woods, & Billings, 
1997). One of the biggest obstacles to human recognition of system errors is the poor quality of 
feedback about the activities of automated systems (Woods, 1994).  For example, it is often 
difficult or impossible to trace the processes or predict the activities of automated flight systems.  
This is especially important when the logic of humans does not match the logic of the machine, a 
growing danger as computers and automation become more complex (Sheridan & Parasuraman, 
2006). Principles of "human-centered automation" prescribe that the pilot must be actively 
involved, adequately informed, and able to monitor and predict the functioning of automated 
systems (Billings, 1996).  To increase transparency, systems could provide roadmaps for locating 
relevant information and for tracking system recommendations, and point out sources of 
confirming or disconfirming information. If NextGen pilots are to rely on technological systems 
to support their decision making, they must be able to follow and understand the rationale 
underlying a DSS recommendation, find the information they need, integrate it appropriately into 
situation assessment and diagnoses, and predict the effect that any decision or action will have on 
aircraft systems and status.  

Decision support for front-end versus back-end processes.  Current and NextGen decision 
support systems may be geared toward either front-end situation assessment or back-end option 
selection. The literature suggests that technological decision aids will be most effective when 
they focus on enhancing situation assessment processes rather than merely prescribing decisions 
or actions. Work supporting the efficacy of support for front-end decision processes was 
provided in a study of decision aids for dealing with in-flight icing. Sarter and Schroeder (2001) 
found that both status and command displays led to improved performance over the baseline 
condition when accurate information was presented. However, when the decision aid provided 
inaccurate information, performance deteriorated below the baseline condition, and more so with 
the command display than with the status display. The authors proposed that the interaction 
could be related to the fact that status and command displays support different stages of decision-
making. The status display supports the front end of the process, that is, diagnosis of a problem 
(situation awareness).  In contrast, the command display supports the back end of the process, the 
choice or action selection stage. The authors posited that displaying back-end action suggestions 
encourages the pilot to cognitively remove him/herself from the diagnosis phase, and increases 
the risk that he or she may enter a “purely reactive mode” and follow system recommendations 
blindly (p. 581).  

In other work, participants performing an air traffic control-related task exhibited superior 
performance when automated aids supported information acquisition and action implementation 
rather than performing cognitive functions such as information integration and analysis (Kaber, 
Perry, Segall, McClernon, & Prinzel, 2006). Back end support such as computer option 
generation can actually short-circuit front-end decision processes. Layton, Smith, and McCoy 
(1994), examined pilot use of a graphical flight planning tool, and found that computer 
generation of a suggestion or recommendation early in the course of problem evaluation 
significantly impacted decision processes and biased pilots towards the computer’s suggestion, 
even when the computer’s brittleness (e.g., in terms of an inadequate model of the “world”) 
resulted in a poor recommendation with potential adverse consequences.  The use of automation 
for presentation of front-end information is critically important when fully reliable back-end 
decision automation cannot be guaranteed (Rovira, McGarry, & Parasuraman, 2007; see HART  
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Group, 2011, for more on automated decision aiding).  If the pilot can achieve accurate situation 
assessment and awareness, resultant decisions are more likely to be appropriate. 

Multiple modes.  One prevalent design challenge for decision aid systems is avoiding 
overload in the visual channel, the mode most often used for information, warnings, and system 
displays. Sklar and Sarter (1999), for example, found that tactile cues, alone and redundant with 
visual cues, increased detection rates and response times to uncommanded mode transitions over 
visual cues alone. Interest in multimodal systems has increased, and these offer the potential for 
presenting data without data overload.  Vibrotactile cues are being investigated as a way of 
providing directional cues in the vertical plane (Salzer, Oron-Gilad, Ronen, & Parmet, 2011).  
Issues in the use of multimodal displays include modality selection, mapping of modalities to 
tasks and information, combining, synchronizing, and integrating modalities, and adapting 
information to a multimodal presentation (Sarter, 2006). This intriguing design concept could 
provide high benefits in NextGen decision-making, as the proliferation of displays threatens to 
overwhelm visual processing capabilities, but further research is required to realize its potential.    

Operator involvement.  A major concern for NextGen is that highly automated systems that 
require little more than system monitoring will push pilots out-of-the-loop, hinder SA, and 
decrease pilots’ ability to intervene when needed.  Creating decision support systems that require 
operator involvement is one proposed remedy to this problem (Endsley & Kiris, 1995).  Endsley 
and Kaber (1999), for example, found that people benefited most from a DSS that combined 
human generation of options and automated implementation of tasks.  The need for pilot 
involvement in aircraft operation was emphasized as part of Billings’ (1996) requirements for 
human-centered aircraft automation:  “To command effectively, the human operator must be 
involved….To remain involved, the human operator must be appropriately informed…The 
human operator must be informed about automated systems’ behavior” (p. 118-119). 
Facilitating appropriate cognitive modes   

One defining characteristic of NextGen cockpits will be the abundance of information 
available to the flight crew.  Most of the new automation will focus on information presentation– 
pilots will have access to precise data concerning flight routes, traffic, or weather. A primary 
goal for designers of decision-support instrumentation and display systems should be to present 
and arrange information so that important data elements are made salient and accessible to 
decision-makers, contributing to development of their situation awareness (Ntuen, Park, & 
Gwang-Myung, 2010). One way to achieve this is through the use of data visualization tools, 
which present numerical data in a visually relevant information-congruent manner. The 
presentation of information is congruent when there is agreement between the meaning or 
significance of the information being conveyed and its mode of presentation (e.g., distance to 
target presented graphically is more congruent than if the same information were presented 
textually). For example, when experienced military personnel were provided information about 
enemy troop movements by means of interactive, electronic maps and diagrams that used 
animation to indicate combatant movement through terrain, they devised significantly better 
plans and did so in less time than did their counterparts who received the same amount of 
information via narrative, textual presentation (Ntuen et al., 2010).  

The formats of automated displays will have predictable effects on the types of cognitive 
processes that will be elicited.  For example, in a study of expert highway engineers, Hammond 
et al. (1997) found that specific characteristics of a task (i.e., display format and hidden 
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relationships among variables within the task) tended to induce corresponding modes of 
responding:  Judgments of highway aesthetics from filmstrips representing segments of the 
highways tended to be performed intuitively.  Judgments of highway capacity via mathematical 
formulas were accomplished analytically.  Quasi-rational cognition was induced by requiring 
judgments of highway safety from bar graphs. Because human response to information depends 
on how it is conveyed, it will be critical in NextGen to present information in a way that 
facilitates appropriate coherent decision processes. Designers of complex cockpit decision aids 
have taken advantage of visualization effects, presenting data in pictorial ‘intuitive’ formats 
whenever possible.  Data are pre-processed and presented in a format that allows, for the most 
part, a wholistic view of aircraft positional and system states.  Often, pictorial representations 
exploit human intuitive pattern-matching abilities, and allow quick detection of some out-of-
parameter system states.  This design philosophy seems to be consistent with the goals of 
workload reduction and information consolidation, and may facilitate faster and more accurate 
situation assessment and decision making in some situations.  

However, other display requirements in the automated cockpit - making sense of electronic 
information systems, searching for hidden information, comprehending digital data, maintaining 
coordination between system states, and planning and programming future states - demand more 
analytical, coherence-based processing. Importantly, then, data that cannot be used intuitively 
(e.g., data that requires interpretation or takes on different meanings in different modes) should 
be presented in a format that facilitates analysis. 

Numbers, modes, indicators, and computer readouts are some of the types of data that must 
be checked, processed, and integrated.  Shortcuts may short-circuit the situation assessment 
process.  Presenting data graphically when analysis is required may not elicit the appropriate 
response mode. For instance, when numerical data are plotted on a two-dimensional graph 
(consisting of two axes, X and Y), interpretation of the data may be manipulated by compressing 
or extending either of the axes, so that the physical placement of a number does or does not 
reflect its significance. For example, it may be that, while scores from 0 to 100 are possible for 
both attributes, a value of 70 on one scale may signal danger, while 70 on the other signals 
normal operation. Design of the layout of the scale on the screen may either help convey or mask 
this critical difference: for example, designers could avoid this problem by indicating ‘normal’ 
ranges through markers such as color bands on both dimensions.  Sun, Li, & Bonini found that 
inappropriate cognitive modes can be eliminated or reduced by requiring the evaluators of the 
information to justify their judgments in explicit terms, thus prompting them to switch to a more 
analytical mode of processing (Sun, Li, & Bonini, 2010).  Interestingly, this relates to and 
provides additional support for the notion that accountability for decision processes, as discussed 
above, may mediate pilot interaction with automated displays and mitigate use of the automation 
heuristic and resultant automation bias.  
Supporting Metacognition  

In addition to presenting data and information appropriately, decision-aiding technology 
should be designed to enhance individual and crew metacognition—that is, it should help people 
to be aware of how they are thinking and are making judgments, and whether or not their process 
is appropriate, coherent, and accurate. Decision aids need to be adaptive not only in the when of 
aiding, but also in the how.  Perhaps one of (if not the) most important functions of decision aids 
may be to help operators to monitor their decision making by prompting processes that guard 
against human error or bias (e.g., check system parameters, look for disconfirming evidence, 
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what are the consequences of this action, do you really want to…) as well as by providing 
information in an appropriate manner. Guerlain et al. (1999), for example, proposed an 
interactive critiquing system with which the human decision maker can submit his/her diagnosis 
to the automation to be checked. Also, in order to be truly effective, decision aids must help 
operators to navigate within and between decision contexts, especially when they are initiating a 
new task or changing contexts (e.g., when pilots transition from a visual to an instrument 
approach or when shifting from monitoring to active control), and to adapt their own cognition 
effectively to changing demands of the situation.   

Facilitating teamwork and shared mental models.  The increased emphasis on teams in 
NextGen – both co-located and distributed - has created additional demands for decision aids. In 
particular, when automated aids can function under many different modes and aircraft status can 
vary depending on weather, traffic, and operational priorities, it is critical that all team members 
share the same correct model of current states. The implications of mode or status changes by 
one team member must be recognized by all team members, and everyone must know when 
actions need to be or have been taken (Moray, 1992; Sheridan & Parasuraman, 2006). This will 
be increasingly important in NextGen as roles and responsibilities shift among team members.  
Decision aids, then, must facilitate team cognition by reminding all users of current state and 
what they can expect to happen in future.  Failure to do this can lead to inaccurate mental models 
and a breakdown of team coordination and decision making.  This topic will be further 
elaborated in the forthcoming chapter on team-level decision making.   
Avoiding the De-Skilling of Decision Making Skills 

NextGen operations pose a threat not only to the flying skills of professional pilots, but also 
to their decision making skills.  Issues around the potential erosion of decision-making skills are 
certain to take on more importance and relevance as NextGen operations evolve.  A long-range 
hazard of extensive use of automated decision-aiding systems is what Hart (1992) has termed the 
“deskilling” of experts. As NextGen automation becomes more prevalent and more autonomous, 
deskilled experts may no longer have the degree of expertise to judge when the system is 
performing correctly, to carry out the necessary degree of supervision over decision functions, or 
to take over from automation when necessary (Morgan, 1992).   

Historically, automated decision support systems have functioned as consultants in the 
decision-making process.  Through tradition or regulation, the user has maintained ultimate 
decision-making authority and borne responsibility for the outcomes of decisions. As these 
systems become more capable of autonomous functioning, and are given more power in the 
guidance of human activity, however, the question of who or what should have responsibility for 
decision making becomes more complicated.  The ubiquity of automated support systems may 
subtly erode the decision maker’s role, and foster almost an abdication of decision responsibility 
to the systems.  Human operators may see reliance on DSSs as the most efficient way to make 
decisions, particularly in times of high workload.  In fact, because an explicit objective of 
automated systems is to reduce human error, automating a decision-making function may 
communicate to the operator that the automation should be given primary responsibility for 
decisions.  

The issue of responsibility in the use of automation and decision aids is complex and at 
times confusing.  Who--or what--should be liable if the human-automation system fails?  
Although responsibility for actions typically rests with the user (Mockler, 1989), the legal status 
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of the user of automated system technology is not always clear (Will, 1991), especially in 
instances in which the user ignores or overrides the advice of the system. For “certain sensitive, 
delicate or hazardous tasks [such as aircraft requiring fast and accurate response beyond human 
capability], it may be unreasonable not to rely upon an expert system” (Gemignani, 1984, p. 
1045). In fact, airline policies may encourage using the highest levels of automation in an effort 
to shift responsibility from pilots to systems (personal communication with C. Abbott, 2011).  In 
the future, lawsuits may result if system aids are consulted and fail to perform correctly, or give 
inaccurate or misleading indications; conversely, operators may be liable for the nonuse of an 
available system or for ignoring its recommendations when they are correct (Zeide & Liebowitz, 
1987). 

Caveats	  and	  Conclusions	  

People seem to believe that greater investments in automation promise lower expenditures 
on developing human expertise. However, the data consistently show that the impact of new 
levels and types of automation is new knowledge requirements for people in the system as 
their role changes to more of a manager and anomaly handler (Sarter et al., 1997, p. 334) 

 
 Throughout this report, we have emphasized that the key driver in NextGen decision 

making will be automation.  Trajectory-based operations (TBO), for example, will require 4-
dimensional automated navigation capabilities. Information and decision support systems will 
provide data about aircraft state, will help pilots synthesize the data, and may offer 
recommendations for action. Automated sources such as SWIM (system-wide information 
management) will make up-to-the minute weather information easily accessible.  Automated 
broadcasting systems (e.g., ADS-B, automatic dependent surveillance-broadcast) will facilitate 
accurate tracking of traffic.  Automated navigational systems will enable flight paths that are 
precise with respect to both position and time. Sophisticated datalink systems will allow crews to 
input new clearances or flight changes with the push of a button.  Automation will enable all-
weather operations that have not been possible in the past, such as CSPR approaches and 
landings.  In the NextGen operational environment, electronic data and information will supplant 
most out-the-window cues, and pilot attention will be much more inside the cockpit than ever 
before.  

Although the benefits of NextGen automation are undeniable, some caveats must be 
acknowledged and addressed in crew training as well as system design. 
‘Mind the Gap’ - Pilots Need Accurate Mental Models of Automated Systems 

Current pilot automation training focuses on procedural knowledge rather than functional 
relationships.  The ‘cookbook,’ step-by-step approach to managing automated systems results in 
large gaps in pilots’ understanding of how systems work and limits their ability to cope with any 
situations outside of normal, standard operations (Sarter & Woods, 1994).  More than a decade 
ago, Billings (1996) and others (Sarter & Woods, 1994) called for training on how systems work 
as well as how to work the systems, and the potential costs of ignoring their call in NextGen 
operations are enormous.  Pilots will still form the last line of defense in the event of anomalies 
or emergencies, and they will need the resilience provided by a deep level of system knowledge 
during non-normal operations.  This will be especially important as new responsibilities are 
shifted from ATC to flight crews. 
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Electronic Systems Require System 2 Processing 
Electronic data are not amenable to System 1 intuitive processes.  Pilots must be aware that 

even when data are presented in graphic format or seem to present patterns for recognition, their 
meaning must be interpreted analytically in the context of automation mode, flight phase, and 
system status. Moreover, expert pilots may not be able to rely on System 1 short-cuts such as 
pattern-matching or heuristics in NextGen because the architecture of the knowledge space will 
have changed. Training programs will need to focus on systems knowledge and coherence skills 
- seeking out relevant data and information and ensuring that they form a consistent ‘story’ of the 
situation - and system design must facilitate the front-end analytical processing required when 
dealing with electronic data and information.   
Systems Awareness Is Key to Situation Awareness 

Situation awareness in the NextGen cockpit cannot be achieved without systems awareness. 
Because most of the information for SA will reside within electronic systems, an awareness of 
what systems are doing and why, what mode they are in, and what they will do next is essential 
to accurate assessment and awareness. Training and design will need to support accurate system 
models and should emphasize systems awareness as well as the integration of data and 
information inside the cockpit with elements outside of the cockpit.   
What’s New and Different? Changes Must Be Highlighted  

One potentially hazardous aspect of NextGen is that it is to some extent an updated 
paradigm, mixing current and new automation and displays.  Changes to systems and procedures 
are being introduced incrementally, and much of the ‘new’ automation actually comprises 
enhancements to current automation.  The FMS, for example, will be upgraded to a 4D 
management system, and will enable autoload of clearances. NextGen systems and displays will 
be somewhat different from current systems and displays, but not completely so, luring pilots 
into old patterns of thinking and interaction when these behaviors are no longer appropriate.  
Pilots with the most experience with old systems may be most susceptible to this trap, as their 
patterns will be more strongly entrenched and they will be susceptible to ‘strong-but-wrong’ 
erroneous behavior that is more consistent with past practice than current requirements (Reason, 
1990).   Training and design must include a focus on what is different in systems and displays. 
Pilots must be aware of nuances of new automation, differences in its functioning, and situations 
in which it is likely to mislead them.   
‘Monitor and Challenge’ Also Applies to Automation 
 NextGen automation will provide flight crews with amazing tools for safe and efficient 
flight.  With new tools, however, come new tasks and duties.  For example, RNP (Required 
Navigational Performance) for TBO will confer increased autonomy on flight crews with respect 
to navigation, along with the concomitant responsibilities for flight monitoring and self-spacing.  
Perhaps the primary responsibility of the pilots will be to use the new tools wisely in their 
decision making processes.  Crew resource management programs train pilots to monitor each 
other, and to challenge each other when anything seems awry.  A similar approach to automation 
will increase the probability that the promise of increased safety and efficiency in NextGen 
operations will be realized. 
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